History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification
نویسنده
چکیده
Humans are continuing to add vast amounts of carbon dioxide (CO2) to the atmosphere through fossil fuel burning and other activities. A large fraction of the CO2 is taken up by the oceans in a process that lowers ocean pH and carbonate mineral saturation state. This effect has potentially serious consequences for marine life, which are, however, difficult to predict. One approach to address the issue is to study the geologic record, which may provide clues about what the future holds for ocean chemistry and marine organisms. This article reviews basic controls on ocean carbonate chemistry on different timescales and examines past ocean chemistry changes and ocean acidification events during various geologic eras.The results allow evaluation of the current anthropogenic perturbation in the context of Earth’s history. It appears that the ocean acidification event that humans are expected to cause is unprecedented in the geologic past, for which sufficiently well-preserved records are available. 141 A nn u. R ev . E ar th P la ne t. Sc i. 20 12 .4 0: 14 116 5. D ow nl oa de d fr om w w w .a nn ua lr ev ie w s. or g by U ni ve rs ity o f H aw ai i a t M an oa L ib ra ry o n 05 /0 3/ 12 . F or p er so na l u se o nl y. EA40CH07-Zeebe ARI 1 April 2012 7:44
منابع مشابه
Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification
[1] Dissolution of fossil fuel CO2 in seawater results in decreasing carbonate ion concentration and lowering of seawater pH with likely negative impacts for many marine organisms. We project detectable changes in carbonate dissolution and evaluate their potential to mitigate atmospheric CO2 and ocean acidification with a global biogeochemistry model HAMOCC forced by different CO2 emission scen...
متن کاملOcean acidification: the other CO2 problem.
Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochem...
متن کاملOcean Acidification and Oceanic Carbon Cycling
The concentration of atmospheric CO2 is increasing due to emissions from burning of fossil fuels and changes in land use. Part of this “anthropogenic CO2” invades the oceans causing a decrease of seawater pH; this process is called “ocean acidification.” The lowered pH, but also the concomitant changes in other properties of the carbonate system, affects marine life and the cycling of carbon in...
متن کاملOcean acidification of the North Pacific Ocean
The addition of fossil fuel carbon dioxide to the atmosphere is rapidly changing seawater chemistry and the calcium carbonate saturation state of the world’s oceans as a result of the acidifying effects of CO2 on seawater. This acidification makes it more difficult for many marine organisms (e.g., corals, plankton, calcareous algae, and mollusks) to build skeletons, tests, and shells of calcium...
متن کاملCO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations
Increasing atmospheric carbon dioxide (CO2) through human activities and invasion of anthropogenic CO2 into the surface ocean alters the seawater carbonate chemistry, increasing CO2 and bicarbonate (HCO − 3 ) at the expense of carbonate ion (CO 3 ) concentrations. This redistribution in the dissolved inorganic carbon (DIC) pool decreases pH and carbonate saturation state (). Several components...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012